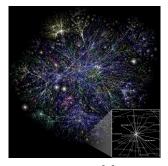
Modeling and Detecting Community Hierarchies

Maria-Florina Balcan, Yingyu Liang Georgia Institute of Technology

Age of Networks

- Massive amount of network data
- How to understand and utilize?



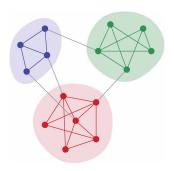
Internet [1]

Social Network [2]

Communities

Groups having tighter connections inside than with outside

- Reveal network structures
- Help decision making: advertisement, task partitioning, ...



Communities

Hierarchical nature: community contains sub-communities

■ Commonly observed but rarely analyzed theoretically

A hierarchical network [3]

Our Contributions

- Theoretical model for community hierarchy
- Efficient algorithm with provable guarantee
- Empirical evaluation

Model Definition

Given similarity function S on n entities

■ S obtained from adjacent matrix A of the network, e.g. S = A; $S = \exp\{A\}$; ...

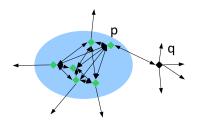
Intuitions about communities

- tighter connections within than with the outside world
- hierarchical organization

Model Definition Compact Blob

C is a compact blob if out of |C| nearest neighbors,

- [internal] any $p \in C$ has few neighbors outside C
- lacktriangle [external] any $q \notin C$ has few neighbors inside C

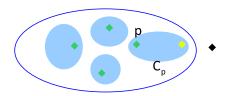


Note:

- few neighbors: $\leq \alpha n$
- lacksquare compact blob should be sufficiently large, i.e. $\geq O(\alpha n)$

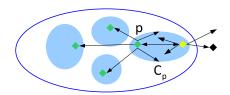
C is a stable community if

- [local] any point $p \in C$ falls into a compact blob $C_p \subseteq C$
- [between blobs] a majority of points in the blob C_p have few neighbors outside C out of the |C| nearest neighbors
- [external] any point $q \notin C$ has few neighbors inside C out of the |C| nearest neighbors



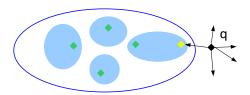
C is a stable community if

- lacksquare [local] any point $p \in C$ falls into a compact blob $C_p \subseteq C$
- [between blobs] a majority of points in the blob C_p have few neighbors outside C out of the |C| nearest neighbors
- [external] any point $q \notin C$ has few neighbors inside C out of the |C| nearest neighbors



C is a stable community if

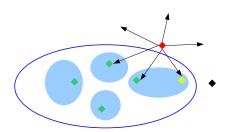
- lacksquare [local] any point $p \in C$ falls into a compact blob $C_p \subseteq C$
- [between blobs] a majority of points in the blob C_p have few neighbors outside C out of the |C| nearest neighbors
- [external] any point $q \notin C$ has few neighbors inside C out of the |C| nearest neighbors



Model Definition Stable Community

C is a stable community if after removing $\leq \nu n$ bad points,

- lacksquare [local] any point $p \in C$ falls into a compact blob $C_p \subseteq C$
- [between blobs] a majority of points in the blob C_p have few neighbors outside C out of the |C| nearest neighbors
- [external] any point $q \notin C$ has few neighbors inside C out of the |C| nearest neighbors

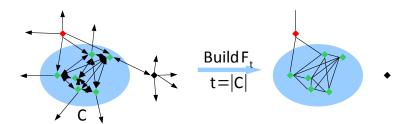


Detection Algorithm

Easy case: blob with known size

Consider a compact blob C with |C| known.

- (1) Build F_t by connecting points that share many neighbors out of the t=|C| nearest neighbors
 - good points in *C* and those outside *C* are disconnected
 - good points in *C* are all connected

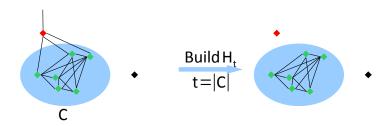


Detection Algorithm

Easy Case: Blob with Known Size

Consider a compact blob C with |C| known.

- (2) Build H_t by connecting points with many neighbors in F_t
 - Bad point "bridges" are disconnected
- (3) Merge components in H_t ;
 - One of the components represents C



Detection Algorithm

Easy Case: Blob with Unknown Size

Consider a compact blob C with |C| unknown.

Vary the threshold t:

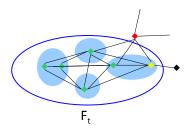
- \blacksquare Begin with a small t
- Increase t and build F_t , H_t
- When t = |C|, a component in H_t represents C

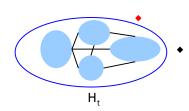
Detection Algorithm General Case

Consider a stable community C

Build H_t on sets of points instead of on points

- Maintain a list £ of communities
- Build H_t on \mathcal{L} to disconnect bad point "bridges" between sub-communities in C and those outside C
- Merge connected components in H_t to form C





Hierarchical Community Detection Algorithm

- Initialize \mathcal{L} to be a list of singleton points
 Initialize the threshold t to be the size of the minimum blob
- Repeat until all points merged:

 build F_t, H_t ;

 update \mathcal{L} by merging large components in H_t ;

 increase t
- Output a tree with internal nodes corresponding to the merges

Theorem

Any stable community is ν -close to a node in the tree.

Proof

Base Case: Compact Blob

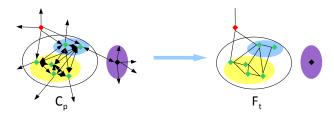
Lemma 1

For any good point p,

■ when $t \leq |C_p|$, good points from C_p will not be merged with good points outside C_p .

Properties of F_t :

- lacksquare No good point inside C_p is connected to good points outside
- No bad point is connected to both a good point inside and a good point outside



Proof

Base Case: Compact Blob

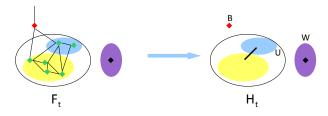
Lemma 1

For any good point p,

■ when $t \leq |C_p|$, good points from C_p will not be merged with good points outside C_p .

Properties of H_t :

- U: community in \mathcal{L} containing good points inside
- W: community in \mathcal{L} containing good points outside
- B: community in \mathcal{L} containing only bad points



Proof

Base Case: Compact Blob

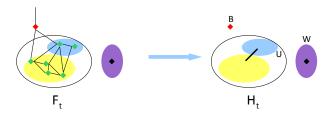
Lemma 1

For any good point p,

■ when $t \leq |C_p|$, good points from C_p will not be merged with good points outside C_p .

Properties of H_t :

- \blacksquare *U* is not connected to *W*
- \blacksquare B cannot be connected to both U and W



Base Case: Compact Blob

Lemma 2

For any good point p,

• when $t = |C_p|$, all good points in C_p are merged into one community.

Properties of F_t , H_t :

- All good points inside are connected in F_t
- lacksquare All communities containing good points inside are connected in H_t

Lemma 3

For any stable community C,

- when $t \leq |C|$, good points from C will not be merged with good points outside C.
- when t = |C|, all good points in C are merged into one community.

Proof Sketch:

- Lemma 1 and 2 show: compact blobs in *C* are formed
- Similar arguments as in Lemma 1 and 2 then show: these compact blobs are merged into one community

Experiment

Lift network adjacent matrix A to similarity function S

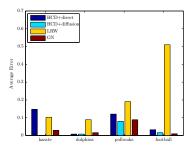
- \blacksquare direct lifting: S = A
- diffusion lifting: $S = \exp{\{\lambda A\}}, \lambda = 0.05$

Evaluation criterion:

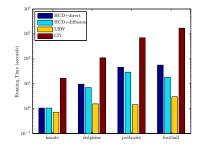
lacktriangle Recover error of a true community C w.r.t. the tree $\mathcal T$

$$\operatorname{error}(C, \mathcal{T}) = \min_{C' \in \mathcal{T}} \frac{|C \oplus C'|}{n}$$

Compare our algo (HCD) to: Lazy Random Walk (LRW [6]), Girvan-Newman algo (GN [4])



Average recover error



Running time (log scale)

Experiment Synthetic Data

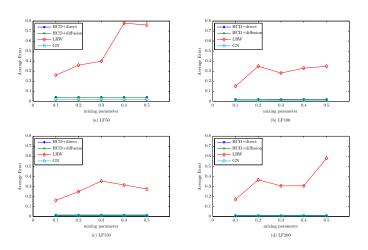
4 network type with two level community hierarchies ([5])

Data set	n	m	k	maxk
LF50	50	≈500	10	15
LF100	100	\approx 1500	15	20
LF150	150	≈3000	20	30
LF200	200	≈6000	30	40

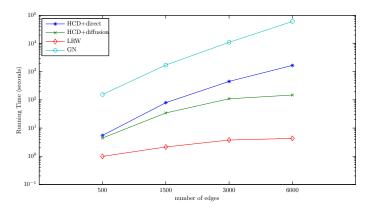
Table: The parameters of the synthetic data sets. n/m: number of nodes/edges; k/maxk: average/maximum degree of the nodes.

For each type, vary a mixing parameter to get 5 networks

- mixing parameter: probability of connecting points inside a community to points outside
- larger parameter: more difficult to recover communities



Average error v.s. mixing parameter



Running time (log scale) v.s. network size

_. . .

Thanks!

Aaron Clauset, Cristopher Moore, and M. E. J. Newman. Hierarchical structure and the prediction of missing links in networks.

Nature, 453(7191):98–101, May 2008.

M. Girvan and M. E. J. Newman.
Community structure in social and biological networks.

Proceedings of the National Academy of Sciences,
99(12):7821–7826, 2002.

Andrea Lancichinetti and Santo Fortunato.

Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities.

Physical Review E, 80(1):016118, 2009.

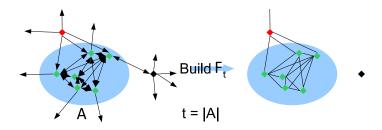
Daniel A. Spielman and Shang-Hua Teng.

Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems.

In *Proceedings of the thirty-sixth annual ACM symposium on*

Theory of computing, STOC '04, pages 81–90, New York, NY, USA, 2004. ACM.

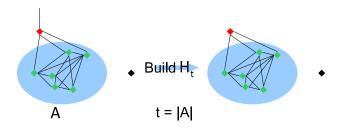
- Initialize \mathcal{L} to be the singleton points. Initialize the threshold $t = 6(\alpha + \nu)n + 1$.
- lacktriangle For each point, check its t nearest neighbors
- Build F_t by connecting any two points that share more than $t 2(\alpha + \nu)n$ nearest neighbors



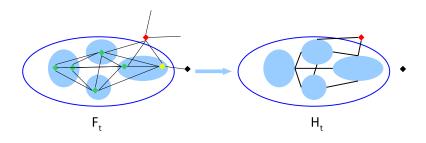
- Build H_t on \mathcal{L} as follows. For any two subsets $u, v \in \mathcal{L}$:
 - \blacksquare if u,v are both singletons: connect them when they share more than νn singleton subsets as neighbors in common in F_t .

A t = |A|

- Build H_t on \mathcal{L} as follows. For any two subsets $u, v \in \mathcal{L}$:
 - if u, v are both singletons: connect them when they share more than νn singleton subsets as neighbors in common in F_t .
 - otherwise: for any $x \in u, y \in v$, let $S_t(x,y)$ denote the number of points in $u \cup v$ they share as neighbors in common in F_t . Connect u,v when $\operatorname{median}_{x \in u, y \in v} S_t(x,y)$ is large enough.
- $lue{}$ Update $oldsymbol{\mathcal{L}}$ by merging sufficiently large components in H_t



- Increase t and repeat until all points merged.
 - by induction, the sub-communities of *C* will be formed
 - lacktriangle build F_t to disconnect good points inside and outside
 - build H_t to disconnect the bad point "bridge"
 - lacktriangle merge sufficiently large components in H_t
- Output a tree with internal nodes corresponding to the merges



Hierarchical Community Detection Algorithm

- Initialize \mathcal{L} to be the singleton points. Initialize the threshold $t = 6(\alpha + \nu)n + 1$.
- Repeat until all points merged: build F_t , H_t ; update \mathcal{L} ; increase t
- Output a tree with internal nodes corresponding to the merges

Theorem

Any stable community is ν -close to a node in the tree.