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Age of Networks

Massive amount of network data

How to understand and utilize?

Internet [1] Social Network [2]



Communities

Groups having tighter connections inside than with outside

Reveal network structures

Help decision making: advertisement, task partitioning, ...



Communities

Hierarchical nature: community contains sub-communities

Commonly observed but rarely analyzed theoretically

A hierarchical network [3]



Our Contributions

Theoretical model for community hierarchy

Efficient algorithm with provable guarantee

Empirical evaluation



Model Definition

Given similarity function S on n entities

S obtained from adjacent matrix A of the network,
e.g. S = A; S = exp{A}; ...

Intuitions about communities

tighter connections within than with the outside world

hierarchical organization



Model Definition
Compact Blob

C is a compact blob if out of |C| nearest neighbors,

[internal] any p ∈ C has few neighbors outside C

[external] any q 6∈ C has few neighbors inside C

Note:

few neighbors: ≤ αn
compact blob should be sufficiently large, i.e. ≥ O(αn)



Model Definition
Stable Community

C is a stable community if

[local] any point p ∈ C falls into a compact blob Cp ⊆ C
[between blobs] a majority of points in the blob Cp have few
neighbors outside C out of the |C| nearest neighbors

[external] any point q 6∈ C has few neighbors inside C out of
the |C| nearest neighbors
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Model Definition
Stable Community

C is a stable community if after removing ≤ νn bad points,

[local] any point p ∈ C falls into a compact blob Cp ⊆ C
[between blobs] a majority of points in the blob Cp have few
neighbors outside C out of the |C| nearest neighbors

[external] any point q 6∈ C has few neighbors inside C out of
the |C| nearest neighbors



Detection Algorithm
Easy case: blob with known size

Consider a compact blob C with |C| known.

(1) Build Ft by connecting points that share many neighbors out
of the t = |C| nearest neighbors

good points in C and those outside C are disconnected

good points in C are all connected

       
BuildFt
t=∣C∣

C



Detection Algorithm
Easy Case: Blob with Known Size

Consider a compact blob C with |C| known.

(2) Build Ht by connecting points with many neighbors in Ft

Bad point “bridges” are disconnected

(3) Merge components in Ht;

One of the components represents C

C

       
BuildHt

t=∣C∣



Detection Algorithm
Easy Case: Blob with Unknown Size

Consider a compact blob C with |C| unknown.

Vary the threshold t:

Begin with a small t

Increase t and build Ft, Ht

When t = |C|, a component in Ht represents C



Detection Algorithm
General Case

Consider a stable community C

Build Ht on sets of points instead of on points

Maintain a list L of communities

Build Ht on L to disconnect bad point “bridges” between
sub-communities in C and those outside C

Merge connected components in Ht to form C

HtFt



Detection Algorithm
Summary

Hierarchical Community Detection Algorithm

Initialize L to be a list of singleton points
Initialize the threshold t to be the size of the minimum blob

Repeat until all points merged:
build Ft, Ht;
update L by merging large components in Ht;
increase t

Output a tree with internal nodes corresponding to the merges

Theorem

Any stable community is ν-close to a node in the tree.



Proof
Base Case: Compact Blob

Lemma 1

For any good point p,

when t ≤ |Cp|, good points from Cp will not be merged with
good points outside Cp.

Properties of Ft:

No good point inside Cp is connected to good points outside
No bad point is connected to both a good point inside and a
good point outside

       

FtCp



Proof
Base Case: Compact Blob

Lemma 1

For any good point p,

when t ≤ |Cp|, good points from Cp will not be merged with
good points outside Cp.

Properties of Ht:

U : community in L containing good points inside
W : community in L containing good points outside
B: community in L containing only bad points

       

Ft Ht

W
U

B



Proof
Base Case: Compact Blob

Lemma 1

For any good point p,

when t ≤ |Cp|, good points from Cp will not be merged with
good points outside Cp.

Properties of Ht:

U is not connected to W
B cannot be connected to both U and W

fill in blank

       

Ft Ht

W
U

B



Proof
Base Case: Compact Blob

Lemma 2

For any good point p,

when t = |Cp|, all good points in Cp are merged into one
community.

Properties of Ft, Ht:

All good points inside are connected in Ft

All communities containing good points inside are connected
in Ht



Proof
General Case

Lemma 3

For any stable community C,

when t ≤ |C|, good points from C will not be merged with
good points outside C.

when t = |C|, all good points in C are merged into one
community.

Proof Sketch:

Lemma 1 and 2 show:
compact blobs in C are formed

Similar arguments as in Lemma 1 and 2 then show:
these compact blobs are merged into one community



Experiment

Lift network adjacent matrix A to similarity function S

direct lifting: S = A

diffusion lifting: S = exp{λA}, λ = 0.05

Evaluation criterion:

Recover error of a true community C w.r.t. the tree T

error(C, T ) = min
C′∈T

|C ⊕ C ′|
n



Experiment
Real World Data

Compare our algo (HCD) to:
Lazy Random Walk (LRW [6]), Girvan-Newman algo (GN [4])
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Experiment
Synthetic Data

4 network type with two level community hierarchies ([5])

Data set n m k maxk

LF50 50 ≈500 10 15
LF100 100 ≈1500 15 20
LF150 150 ≈3000 20 30
LF200 200 ≈6000 30 40

Table: The parameters of the synthetic data sets. n/m: number of
nodes/edges; k/maxk: average/maximum degree of the nodes.

For each type, vary a mixing parameter to get 5 networks

mixing parameter: probability of connecting points inside a
community to points outside

larger parameter: more difficult to recover communities



Experiment
Synthetic Data
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Experiment
Synthetic Data
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Thanks!
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Detection Algorithm Details

Initialize L to be the singleton points.
Initialize the threshold t = 6(α+ ν)n+ 1.

For each point, check its t nearest neighbors

Build Ft by connecting any two points that share more than
t− 2(α+ ν)n nearest neighbors



Detection Algorithm Details

Build Ht on L as follows. For any two subsets u, v ∈ L:

if u, v are both singletons: connect them when they share more
than νn singleton subsets as neighbors in common in Ft.



Detection Algorithm Details

Build Ht on L as follows. For any two subsets u, v ∈ L:

if u, v are both singletons: connect them when they share more
than νn singleton subsets as neighbors in common in Ft.
otherwise: for any x ∈ u, y ∈ v, let St(x, y) denote the number
of points in u ∪ v they share as neighbors in common in Ft.
Connect u, v when medianx∈u,y∈vSt(x, y) is large enough.

Update L by merging sufficiently large components in Ht



Detection Algorithm Details

Increase t and repeat until all points merged.

by induction, the sub-communities of C will be formed
build Ft to disconnect good points inside and outside
build Ht to disconnect the bad point “bridge”
merge sufficiently large components in Ht

Output a tree with internal nodes corresponding to the merges



Detection Algorithm Details
Summary

Hierarchical Community Detection Algorithm

Initialize L to be the singleton points.
Initialize the threshold t = 6(α+ ν)n+ 1.

Repeat until all points merged:
build Ft, Ht; update L; increase t

Output a tree with internal nodes corresponding to the merges

Theorem

Any stable community is ν-close to a node in the tree.
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